• Pytania do wywiadu dotyczącego systemu typów Java
• Pytania do wywiadu dotyczącego współbieżności języka Java (+ odpowiedzi)
• Pytania dotyczące struktury klas Java i inicjalizacji
• Pytania do wywiadów Java 8 (+ odpowiedzi) (bieżący artykuł) • Zarządzanie pamięcią w pytaniach do wywiadów w języku Java (+ odpowiedzi)
• Pytania do wywiadu dotyczącego generycznych programów Java (+ odpowiedzi)
• Pytania do wywiadu Java Flow Control (+ odpowiedzi)
• Pytania do wywiadu dotyczącego wyjątków Java (+ odpowiedzi)
• Pytania do wywiadów z adnotacjami Java (+ odpowiedzi)
• Najważniejsze pytania do wywiadów w ramach Spring Framework
1. Wstęp
W tym artykule przyjrzymy się niektórym pytaniom związanym z JDK8, które mogą pojawić się podczas wywiadu.
Java 8 to wydanie platformy wyposażone w nowe funkcje językowe i klasy bibliotek. Większość z tych nowych funkcji ma na celu uzyskanie czystszego i bardziej zwartego kodu, a niektóre dodają nowe funkcje, które nigdy nie były obsługiwane w Javie.
2. Ogólna wiedza na temat języka Java 8
Q1. Jakie nowe funkcje dodano w Javie 8?
Java 8 jest dostarczana z kilkoma nowymi funkcjami, ale najważniejsze z nich to:
- Wyrażenia lambda - nowa funkcja językowa pozwalająca na traktowanie działań jako obiektów
- Odniesienia do metod - umożliwiają definiowanie wyrażeń lambda poprzez bezpośrednie odwoływanie się do metod przy użyciu ich nazw
- Opcjonalne - specjalna klasa opakowania używana do wyrażania opcjonalności
- Functional Interface - interfejs z maksymalnie jedną abstrakcyjną metodą, implementację można zapewnić za pomocą wyrażenia Lambda
- Metody domyślne - dają nam możliwość dodawania pełnych implementacji w interfejsach oprócz metod abstrakcyjnych
- Nashorn, JavaScript Engine - oparty na Javie silnik do wykonywania i oceny kodu JavaScript
- Stream API - specjalna klasa iteratora, która umożliwia przetwarzanie kolekcji obiektów w funkcjonalny sposób
- Date API - ulepszony, niezmienny interfejs Date API inspirowany JodaTime
Wraz z tymi nowymi funkcjami wiele ulepszeń funkcji jest wykonywanych pod maską, zarówno na poziomie kompilatora, jak i JVM.
3. Odniesienia do metod
Q1. Co to jest odniesienie do metody?
Odwołanie do metody to konstrukcja Java 8, której można używać do odwoływania się do metody bez jej wywoływania. Służy do traktowania metod jako wyrażeń lambda. Działają tylko jako cukier syntaktyczny, aby zmniejszyć szczegółowość niektórych lambd. W ten sposób poniższy kod:
(o) -> o.toString();
może zostać:
Object::toString();
Odwołanie do metody można zidentyfikować za pomocą podwójnego dwukropka oddzielającego nazwę klasy lub obiektu od nazwy metody. Ma różne odmiany, takie jak odniesienie do konstruktora:
String::new;
Odniesienie do metody statycznej:
String::valueOf;
Odwołanie do metody wystąpienia powiązanego:
str::toString;
Odwołanie do metody wystąpienia niezwiązanego:
String::toString;
Możesz przeczytać szczegółowy opis odniesień do metod z pełnymi przykładami, klikając ten link i ten.
Q2. Jakie jest znaczenie String :: Valueof Expression?
Jest to statyczne odwołanie do metody valueOf klasy String .
4. Opcjonalnie
Q1. Co jest opcjonalne ? Jak można go używać?
Opcjonalna to nowa klasa w Javie 8, która zawiera wartość opcjonalną, tj. Wartość, która istnieje lub nie. Jest to opakowanie otaczające obiekt i można o nim myśleć jako o pojemniku zawierającym zero lub jeden element.
Opcjonalne ma specjalną wartość Optional.empty () zamiast opakowanej wartości null . Dlatego w wielu przypadkach można go użyć zamiast wartości null, aby pozbyć się wyjątku NullPointerException .
Możesz przeczytać dedykowany artykuł na temat Opcjonalne tutaj.
Głównym celem Optional , zgodnie z projektem jego twórców, było zwracanie typów metod, które wcześniej zwracałyby wartość null . Takie metody wymagałyby napisania standardowego kodu sprawdzającego zwracaną wartość, a czasami mogłyby zapomnieć o wykonaniu testu obronnego. W języku Java 8 opcjonalny typ zwracany jawnie wymaga, aby użytkownik obsługiwał wartości opakowane o wartości null lub niezerowej w inny sposób.
Na przykład metoda Stream.min () oblicza minimalną wartość w strumieniu wartości. Ale co, jeśli strumień jest pusty? Gdyby nie opcja Optional , metoda zwróciłaby null lub zgłosiłaby wyjątek.
But it returns an Optional value which may be Optional.empty() (the second case). This allows us to easily handle such case:
int min1 = Arrays.stream(new int[]{1, 2, 3, 4, 5}) .min() .orElse(0); assertEquals(1, min1); int min2 = Arrays.stream(new int[]{}) .min() .orElse(0); assertEquals(0, min2);
It's worth noting that Optional is not a general purpose class like Option in Scala. It is not recommended to be used as a field value in entity classes, which is clearly indicated by it not implementing the Serializable interface.
5. Functional Interfaces
Q1. Describe Some of the Functional Interfaces in the Standard Library.
There are a lot of functional interfaces in the java.util.function package, the more common ones include but not limited to:
- Function – it takes one argument and returns a result
- Consumer – it takes one argument and returns no result (represents a side effect)
- Supplier – it takes not argument and returns a result
- Predicate – it takes one argument and returns a boolean
- BiFunction – it takes two arguments and returns a result
- BinaryOperator – it is similar to a BiFunction, taking two arguments and returning a result. The two arguments and the result are all of the same types
- UnaryOperator – it is similar to a Function, taking a single argument and returning a result of the same type
For more on functional interfaces, see the article “Functional Interfaces in Java 8”.
Q2. What Is a Functional Interface? What Are the Rules of Defining a Functional Interface?
A functional interface is an interface with no more, no less but one single abstract method (default methods do not count).
Where an instance of such interface is required, a Lambda Expression can be used instead. More formally put: Functional interfaces provide target types for lambda expressions and method references.
The arguments and return type of such expression directly match those of the single abstract method.
For instance, the Runnable interface is a functional interface, so instead of:
Thread thread = new Thread(new Runnable() { public void run() { System.out.println("Hello World!"); } });
you could simply do:
Thread thread = new Thread(() -> System.out.println("Hello World!"));
Functional interfaces are usually annotated with the @FunctionalInterface annotation – which is informative and does not affect the semantics.
6. Default Method
Q1. What Is a Default Method and When Do We Use It?
A default method is a method with an implementation – which can be found in an interface.
We can use a default method to add a new functionality to an interface while maintaining backward compatibility with classes that are already implementing the interface:
public interface Vehicle { public void move(); default void hoot() { System.out.println("peep!"); } }
Usually, when a new abstract method is added to an interface, all implementing classes will break until they implement the new abstract method. In Java 8, this problem has been solved by the use of default method.
For example, Collection interface does not have forEach method declaration. Thus, adding such method would simply break the whole collections API.
Java 8 introduces default method so that Collection interface can have a default implementation of forEach method without requiring the classes implementing this interface to implement the same.
Q2. Will the Following Code Compile?
@FunctionalInterface public interface Function2 { public V apply(T t, U u); default void count() { // increment counter } }
Yes. The code will compile because it follows the functional interface specification of defining only a single abstract method. The second method, count, is a default method that does not increase the abstract method count.
7. Lambda Expressions
Q1. What Is a Lambda Expression and What Is It Used for
In very simple terms, a lambda expression is a function that can be referenced and passed around as an object.
Lambda expressions introduce functional style processing in Java and facilitate the writing of compact and easy-to-read code.
Because of this, lambda expressions are a natural replacement for anonymous classes as method arguments. One of their main uses is to define inline implementations of functional interfaces.
Q2. Explain the Syntax and Characteristics of a Lambda Expression
A lambda expression consists of two parts: the parameter part and the expressions part separated by a forward arrow as below:
params -> expressions
Any lambda expression has the following characteristics:
- Optional type declaration – when declaring the parameters on the left-hand side of the lambda, we don't need to declare their types as the compiler can infer them from their values. So int param -> … and param ->… are all valid
- Optional parentheses – when only a single parameter is declared, we don't need to place it in parentheses. This means param -> … and (param) -> … are all valid. But when more than one parameter is declared, parentheses are required
- Optional curly braces – when the expressions part only has a single statement, there is no need for curly braces. This means that param – > statement and param – > {statement;} are all valid. But curly braces are required when there is more than one statement
- Optional return statement – when the expression returns a value and it is wrapped inside curly braces, then we don't need a return statement. That means (a, b) – > {return a+b;} and (a, b) – > {a+b;} are both valid
To read more about Lambda expressions, follow this link and this one.
8. Nashorn Javascript
Q1. What Is Nashorn in Java8?
Nashorn is the new Javascript processing engine for the Java platform that shipped with Java 8. Until JDK 7, the Java platform used Mozilla Rhino for the same purpose. as a Javascript processing engine.
Nashorn provides better compliance with the ECMA normalized JavaScript specification and better runtime performance than its predecessor.
Q2. What Is JJS?
In Java 8, jjs is the new executable or command line tool used to execute Javascript code at the console.
9. Streams
Q1. What Is a Stream? How Does It Differ from a Collection?
In simple terms, a stream is an iterator whose role is to accept a set of actions to apply on each of the elements it contains.
The stream represents a sequence of objects from a source such as a collection, which supports aggregate operations. They were designed to make collection processing simple and concise. Contrary to the collections, the logic of iteration is implemented inside the stream, so we can use methods like map and flatMap for performing a declarative processing.
Another difference is that the Stream API is fluent and allows pipelining:
int sum = Arrays.stream(new int[]{1, 2, 3}) .filter(i -> i >= 2) .map(i -> i * 3) .sum();
And yet another important distinction from collections is that streams are inherently lazily loaded and processed.
Q2. What Is the Difference Between Intermediate and Terminal Operations?
Stream operations are combined into pipelines to process streams. All operations are either intermediate or terminal.
Intermediate operations are those operations that return Stream itself allowing for further operations on a stream.
These operations are always lazy, i.e. they do not process the stream at the call site, an intermediate operation can only process data when there is a terminal operation. Some of the intermediate operations are filter, map and flatMap.
Terminal operations terminate the pipeline and initiate stream processing. The stream is passed through all intermediate operations during terminal operation call. Terminal operations include forEach, reduce, Collect and sum.
To drive this point home, let us look at an example with side effects:
public static void main(String[] args) { System.out.println("Stream without terminal operation"); Arrays.stream(new int[] { 1, 2, 3 }).map(i -> { System.out.println("doubling " + i); return i * 2; }); System.out.println("Stream with terminal operation"); Arrays.stream(new int[] { 1, 2, 3 }).map(i -> { System.out.println("doubling " + i); return i * 2; }).sum(); }
The output will be as follows:
Stream without terminal operation Stream with terminal operation doubling 1 doubling 2 doubling 3
As you can see, the intermediate operations are only triggered when a terminal operation exists.
Q3. What Is the Difference Between Map and flatMap Stream Operation?
There is a difference in signature between map and flatMap. Generally speaking, a map operation wraps its return value inside its ordinal type while flatMap does not.
For example, in Optional, a map operation would return Optional type while flatMap would return String type.
So after mapping, one needs to unwrap (read “flatten”) the object to retrieve the value whereas, after flat mapping, there is no such need as the object is already flattened. The same concept is applied to mapping and flat mapping in Stream.
Both map and flatMap are intermediate stream operations that receive a function and apply this function to all elements of a stream.
The difference is that for the map, this function returns a value, but for flatMap, this function returns a stream. The flatMap operation “flattens” the streams into one.
Here's an example where we take a map of users' names and lists of phones and “flatten” it down to a list of phones of all the users using flatMap:
Map
people = new HashMap(); people.put("John", Arrays.asList("555-1123", "555-3389")); people.put("Mary", Arrays.asList("555-2243", "555-5264")); people.put("Steve", Arrays.asList("555-6654", "555-3242")); List phones = people.values().stream() .flatMap(Collection::stream) .collect(Collectors.toList());
Q4. What Is Stream Pipelining in Java 8?
Stream pipelining is the concept of chaining operations together. This is done by splitting the operations that can happen on a stream into two categories: intermediate operations and terminal operations.
Each intermediate operation returns an instance of Stream itself when it runs, an arbitrary number of intermediate operations can, therefore, be set up to process data forming a processing pipeline.
There must then be a terminal operation which returns a final value and terminates the pipeline.
10. Java 8 Date and Time API
Q1. Tell Us About the New Date and Time API in Java 8
A long-standing problem for Java developers has been the inadequate support for the date and time manipulations required by ordinary developers.
The existing classes such as java.util.Date and SimpleDateFormatter aren’t thread-safe, leading to potential concurrency issues for users.
Poor API design is also a reality in the old Java Data API. Here's just a quick example – years in java.util.Date start at 1900, months start at 1, and days start at 0 which is not very intuitive.
These issues and several others have led to the popularity of third-party date and time libraries, such as Joda-Time.
In order to address these problems and provide better support in JDK, a new date and time API, which is free of these problems, has been designed for Java SE 8 under the package java.time.
11. Conclusion
In this article, we've explored a few very important questions for technical interview questions with a bias on Java 8. This is by no means an exhaustive list but only contains questions that we think are most likely to appear in each new feature of Java 8.
Even if you are just starting up, ignorance of Java 8 isn't a good way to go in an interview, especially when Java appears strongly on your resume. It is, therefore, important that you take some time to understand the answers to these questions and possibly do more research.
Good luck in your interview.
Następne » Zarządzanie pamięcią w Java Pytania do wywiadu (+ odpowiedzi) « Poprzednie Pytania do wywiadu dotyczącego struktury klas Java i inicjalizacji